23. Метатеоретические свойства формальных теорий: синтаксическая непротиворечивость и полнота, семантическая непротиворечивость и полнота. - Мои статьи - Каталог статей - Antony Zakutin

Покажи всем!

...

Совет мудреца:

Поиск

Кнопка на меня

  • Для создания кнопки-ссылки на мою страницу добавьте вот этот скрипт по

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0
Главная » Статьи » Мои статьи

23. Метатеоретические свойства формальных теорий: синтаксическая непротиворечивость и полнота, семантическая непротиворечивость и полнота.
Непротиворечивость, совместимость, свойство дедуктивной теории (или системы аксиом, посредством которых теория задаётся), состоящее в том, что из неё нельзя вывести противоречие, т. е. какие-либо два предложения А и Ø А, каждое из которых является отрицанием другого. Для широкого класса формальных теорий, включающих аксиому А & Ø А É В («из противоречия следует любое утверждение»), Непротиворечивость равносильна существованию в данной теории хотя бы одного недоказуемого предложения.

  Непротиворечивость, необходимая для того чтобы система могла рассматриваться как описание некоторой «содержательной ситуации», отнюдь не гарантирует существования такой ситуации. Впрочем, для любой непротиворечивой системы аксиом в каждом случае могут быть указаны абстрактные модели; поэтому для представителей «классических» направлений в основаниях математики и логики (и тем более для представителей моделей теории) Непротиворечивость служит если и не обоснованием «существования» описываемых аксиомами совокупностей абстрактных объектов, то, по крайней мере, достаточным основанием для содержательного рассмотрения и изучения таких объектов. Поскольку описываемая теорией «ситуация» лежит вне самой теории, данное выше понятие Непротиворечивость, которое можно назвать «внутренней» (иначе -синтаксической, или логической) Непротиворечивость, тесно связано с так называемой «внешней» (семантической) Непротиворечивость, заключающейся в недоказуемости в данной теории никакого предложения, противоречащего (в обычном содержательном смысле) фактам описываемой ею «действительности». Несмотря на эту связь, синтаксическая и семантическая Непротиворечивость равносильны лишь для таких «бедных» логических теорий, как, например, исчисление высказываний (см. Логика высказываний); вообще же говоря, внутренняя Непротиворечивость сильнее внешней. Роль отображаемой какой-либо конкретной теорией «действительности» может играть и некоторая другая дедуктивная теория, так что внешнюю Непротиворечивость исходной теории можно понимать как её относительную Непротиворечивость, а указание системы соответствующих семантических правил перевода понятий, выражений и утверждений из второй теории в первую, дающее интерпретацию (модель) исходной теории, оказывается для неё доказательством относительной Непротиворечивость

  В классической математике источником построения моделей для таких доказательств служит в конечном счёте множеств теория. Однако обнаружение в теории множеств парадоксов (антиномий) обусловило потребность поиска новых, принципиально отличных от метода интерпретаций, методов доказательства Непротиворечивость, - в некотором смысле «абсолютных». (Такая потребность возникает и в силу несовпадения понятий внутренней и внешней Непротиворечивость) Можно избрать и промежуточный путь, требуя абсолютное доказательство Непротиворечивость только для аксиоматической теории множеств (к которой уже можно было бы сводить проблемы Непротиворечивость конкретных математических теорий чисто теоретико-модельными средствами) или даже хотя бы для такого относительно простого её фрагмента, как формализованная арифметика натуральных чисел, так как средствами последней строится теоретико-множественный «универсум» (предметная область) основных разделов классической математики. Такой путь и избрал Д. Гильберт, предложивший широкую программу, в ходе выполнения которой обосновываемые теории, прежде всего, подвергались бы формализации, а полученные формальные системы (исчисления) исследовались бы на предмет их синтаксической Непротиворечивость так называемыми финитными (т. е. содержательными, но не использующими сомнительных теоретико-множественных абстракций) средствами. Такие абсолютные доказательства Непротиворечивость составили основное содержание развиваемой школой Гильберта метаматематики (теории доказательства). Но уже в 1931 К. Гёдель доказал принципиальную невыполнимость гильбертовой программы, а тем самым и ограниченность аксиоматического метода, в рамках которого для достаточно богатых формальных теорий требования Непротиворечивость и полноты оказываются несовместимыми (подробнее см. Аксиоматический метод). Что же касается содержательных дедуктивных теорий (в том числе и математических), по отношению к которым требование полноты теряет смысл, то для них Непротиворечивость по-прежнему остаётся важнейшим необходимым критерием осмысленности и практической приложимости.

_________________________



Полнота, свойство научной теории, характеризующее достаточность для каких-либо определённых целей её выразительных и (или) дедуктивных средств.

  Один из аспектов понятия Полнота - т. н. функциональная Полнота (ф. п.) - применительно к естественному языку представляет собой то (неформальное) его качество, благодаря которому на нём можно сформулировать любое осмысленное сообщение, могущее понадобиться для тех или иных целей. Например, английский язык функционально полон с точки зрения целей, которые имел в виду У. Шекспир, создавая «Гамлета» (если исходить из предположения, что ему удалось полностью реализовать свой замысел). Но и любой другой из «живых» языков, на который «Гамлет» переведён, полон в том же смысле: перевод как раз и служит свидетельством этой ф. п.

  Аналогично (в математике), семейство функций, принадлежащих некоторому классу функций, является полным относительно этого класса (и относительно некоторого фиксированного запаса «допустимых» операций над функциями), если любую функцию этого класса можно выразить через функции данного семейства (с помощью допустимых операций). Так, любая из функций sinx или cosx составляет одноэлементный класс, полный для всех тригонометрических функций (относительно четырёх арифметических действий, возведения в квадрат и извлечения квадратного корня); три единичных вектора по осям координат образуют полный класс (относительно сложения, вычитания и умножения на действительное число) для множества всех векторов трёхмерного евклидова пространства.

  Понятие ф. п. играет важную роль в математической логике: все двуместные логические операции исчисления высказываний (см. Логика высказываний) могут быть выражены через конъюнкцию и отрицание, или через дизъюнкцию и отрицание, или через импликацию и отрицание, или даже через единственную операцию антиконъюнкцию («штрих Шеффера»), т. е. все эти семейства логических связок представляют собой функционально полные классы операций алгебры логики.

  Для логики и её приложений к дедуктивным наукам не менее существенную роль играет т. н. дедуктивная Полнота (д. п.) аксиоматических теорий (или, что то же, положенных в их основу систем аксиом; эпитет «дедуктивная» обычно опускают). В зависимости от выбора критерия «достаточности» дедуктивных средств теории (или формального исчисления) приходят к той или иной точной модификации понятия д. п. Вообще аксиоматическая система называется (дедуктивно) полной по отношению к данному свойству (или данной интерпретации), если все её формулы, обладающие данным свойством (истинные при данной интерпретации), доказуемы в ней. Такое понятие д. п. («в широком смысле»), связанное с понятием истинности, носит, очевидно, семантический (содержательный, см. Семантика) характер. Но в ряде случаев понятие д. п. удаётся определить чисто синтаксическим (формальным) путём и сделать предметом изучения метаматематическими (см. Метаматематика) средствами. Такая д. п. («в узком смысле») определяется как невозможность присоединения к системе без противоречия никакой недоказуемой в ней формулы в качестве аксиомы; эта («абсолютная») Полнота, вообще говоря, сильнее семантической Полнота: например, исчисление предикатов, полное в широком смысле, в узком смысле неполно.

  Неполные (или, как часто говорят, некатегоричные) системы аксиом, допускающие существенно различные и притом неизоморфные интерпретации (например, теория групп в абстрактной алгебре или теория топологических пространств), представляют особый интерес именно богатством и разнообразием своих приложений (это обусловливается различными путями «пополнения» теории за счёт присоединения различных аксиом). Но ещё более важно то, что (как установил в 1931 К. Гёдель) для достаточно богатых аксиоматических теорий (включающих формальную арифметику натуральных чисел и тем более аксиоматическую теорию множеств) требования д. п. и непротиворечивости оказываются несовместимыми. Это поразительное открытие составило целую эпоху в развитии математической логики, привело к осознанию принципиальной ограниченности играющего в ней большую роль аксиоматического метода и стимулировало поиски новых, более гибких в известном смысле, логических и логико-математических теорий и новых дедуктивных средств.

Категория: Мои статьи | Добавил: AZ (26.02.2010)
Просмотров: 10590 | Комментарии: 4 | Рейтинг: 0.0/0 |
Всего комментариев: 4
4  
http://www.sarvajal.com - viagra

3  
http://gfkdjghfkgjjkhj.com - gfkdjghfkgjjkh

2  
Самый основной причиной этого является нагревание воздуха от чувствительных загорать,грязи,привести также могут служить атмосферные фронты и многое другое.

1  
По моему мнению Вы не правы. Предлагаю это обсудить. Пишите мне в PM.

[url=http://www.tips2sports.com]бейсбол игры
[/url]

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]